Publications

2023-2022

  • Sosulin I.S., Lisouskaya A. Assessing the radiation stability of key ligands in nuclear waste separation. Rad. Phys. Chem., 2024, 222, 111785. https://doi.org/10.1016/j.radphyschem.2024.111785

  • Sosulin I.S., Ryan D.H., Lisouskaya A. Radicals from tributyl phosphate decomposition: a combined electron paramagnetic resonance spectroscopic and computational chemistry investigation. Phys. Chem. Chem. Phys., 2023, 25, 29350-29357. https://doi.org/10.1039/D3CP03584K

  • Conrad J., Lisouskaya A., Bartels D.M., Mezyk S.P.  Kinetics of the Temperature‐Dependent eaq and ⋅OH Radical Reactions with Cr(III) Ions in Aqueous Solutions. ChemPhysChem., 2023, e202300465. https://doi.org/10.1002/cphc.202300465
  • Conrad J., Lisouskaya A., Barr L., Stuart C. R., Bartels D. M. High-Temperature Reaction Kinetics of the eaq and HO2 Radicals with Iron(II) Ions in Aqueous Solutions.  J. Phys. Chem. A, 2023, 127 (27), 5683-5688. https://doi.org/10.1021/acs.jpca.3c02436
  • Lisovskaya A, Schiemann O, Carmichael I. Unveiling the Mechanism of Photodamage to Sphingolipid Molecules via Laser Flash Photolysis and EPR. Photochem Photobiol, 2023, 99: 1400-1411. https://doi.org/10.1111/php.13804
  • Lisouskaya A., Markad U., Bartels D.M. Reactions of nickel ions in water radiolysis up to 300 °C. J. Phys. Chem. B, 2023, 127: 12, 2784–2791. https://doi.org/10.1021/acs.jpcb.3c00046
  • Lisouskaya, A., Tarábek P., Bartels D., Carmichael I. Persistent Radicals in Irradiated Imidazolium Ionic Liquids Probed by EPR Spectroscopy. Rad. Phys. Chem., 2023, 202, 110513. https://doi.org/10.1016/j.radphyschem.2022.110513 
  • Semenkova G., Amaegberi N., Lisovskaya A., Pinchuk S., Poleshko A., Shadyro O. 2-Hexadecenal Regulates ROS Production and Induces Apoptosis in Polymorphonuclear Leucocytes. Cell Biochem. Biophys., 2023, 81, 77-86. https://doi.org/10.1007/s12013-022-01117-w
  • Sebastian A., Spulber D., Lisouskaya A., Ptasinska S. Revealing low-temperature plasma efficacy through a dose-rate assessment using machine learning. Sci Rep., 2022, 12, 18353. https://doi.org/10.1038/s41598-022-21783-3
  • Conrad, J.; Lisouskaya, A.; Bartels, D.M. Pulse Radiolysis and Transient Absorption of Aqueous Cr(VI) Solutions up to 325 °C. ACS Omega, 2022, 7: 43, 39071–39077. https://doi.org/10.1021/acsomega.2c04807
  • Lisouskaya A., Markad U., Carmichael I., Bartels D.M. Reactivity of Zn+aq in high-temperature water radiolysis PCCP, 2022, 24, 19882 – 19889. https://doi.org/10.1039/D2CP02434A 

2021-2019

  • Lisovskaya A., Carmichael I., Harriman A. A Pulse Radiolysis Investigation of Radicals Derived from Water-Soluble Cyanine Dyes: Implications for Super-Resolution Microscopy. J. Phys. Chem. A, 2021, 125, 26, 5779–5793. https://doi.org/10.1021/acs.jpca.1c03776 

  • Lisovskaya A, Shadyro O, Schiemann O, Carmichael I. OH radical reactions with the hydrophilic component of sphingolipids. Phys. Chem. Chem. Phys., 2021, 23, 1639. https://doi.org/10.1039/D0CP05972B

  • Lisovskaya A., Kotchaphan K., Bartels D. One-electron redox kinetics of aqueous transition metal couples Zn2+/+, Co2+/+, and Ni2+/+ using pulse radiolysis. Phys. Chem. Chem. Phys., 2020, 22, 19046-19058. https://doi.org/10.1039/D0CP03214J 

  • Tarabek P., Lisovskaya A., Bartels D.M.  γ-Radiolysis of room temperature ionic liquids. An EPR spin-trapping study. J. Phys. Chem. B, 2019, 123, 50, 10837-10849. https://doi.org/10.1021/acs.jpcb.9b09155

  • Janik I., Lisovskaya A., Bartels D. Partial Molar Volume of the Hydrated Electron" J. Phys. Chem.Letters. 2019, 10, 2220-2226. https://doi.org/10.1021/acs.jpclett.9b00445 
  • Lisovskaya A., Bartels D.M. Reduction of CO2 by hydrated electrons in high temperature water. Rad. Phys. Chem., 2019, 158, 61-63. https://doi.org/10.1016/j.radphyschem.2019.01.017

  • Lisovskaya A., Shadyro O.I. ROS-induced lipid transformations without oxygen participation. Chem Phys Lipids, 2019, 221, 176-183. https://doi.org/10.1016/j.chemphyslip.2019.03.013 

  • Amaegberi N., Semenkova G., Kvacheva Z., Lisovskaya A., Pinchuk S., Shadyro O. 2-Hexadecenal inhibits growth of c6 glioma cells. Cell Biochem. Funct., 2019, 37, 281-289. https://doi.org/10.1002/cbf.3400

  • Amaegberi N.V., Semenkova G.N., Lisovskaya A.G., Kvacheva Z.B. Modification of redox processes in C6 glioma cells by 2-hexadeсenal, the product of sphingolipid destruction. Biophysics, 2019, 64 (3), 424-430. https://doi.org/10.1134/S0006350919030023